
PROGRAM EFFICIENCY

Measuring the performance of CODE

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Introduction

 Efficiency refers to the quality of Algorithm i.e. code

must perform the task in minimum execution time and

resources.

 It is important to measure the efficiency of algorithm

before applying them on large scale i.e. on bulk of

data.

 Nowadays most of application are online where prompt

response is required, if efficiency of algorithm is not

checked then the site will crash and organization may

loose their customer/business because of slow speed.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Introduction

 The performance of Algorithm depends upon

 INTERNAL FACTORS

 Time Required to Run

 Space(or Memory) required to Run

 EXTERNAL FACTORS

 Size of input to the algorithm

 Speed of the computer on which it is run

 Quality of the compiler.

 Since the external factors are controllable to some extent,

our major focus is to handle the internal factors.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Computational Complexity

 Computation involves problems to be solved and

algorithm to solve them

 Complexity involves study of how much resource

like TIME and SPACE is needed to run the algorithm

 Effectiveness means that the algorithm carries out its

intended function correctly

 Efficiency means algorithm should be correct with

the best possible performance

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Estimating Complexity of Algorithms

 In Previous Slide we already understood that 2

major factors responsible for efficiency of algorithm

are TIME TAKEN and AMOUNT OF SPACE.

 Out of two, TIME TAKEN is more important factor to

consider.

 TIME COMPLEXITY of a program(for given input) is

the number of elementary instruction that this

program executes. This number is computed with

respect to the size n of the input data.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Big-O Notation

 The Big-O notation is used to depict an algorithm’s
growth rate. The growth rate determines the
algorithm’s performance when its input size grows.

 Through Big-O, the upper bound of an algorithm’s
performance is specified i.e. if algorithm takes
O(n2) time; this means algorithm will take at the
most n2 steps for input size n.

 O(n) means algorithm will take n steps for
input n

 O(1) means algorithm will take 1 step to
perform action for input n

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Big-O Notation

 SIZE

COMPLEXITY

10 20 40 100 400

n2 100 400 1600 10000 160000

2n 1024 1048576 1012 1.26 x 1030 Very Big…

Performance of algorithm is inversely proportional to the wall clock time it records for

a given input size. Program with a bigger O run slower than program with a smaller

O

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Dominant term

 It is the term which affect the most on algorithm’s

performance.

 For example if the term is : ax2 + bx + c (for

constant a, b, c), then we can see the maximum

impact on the algorithm’s performance will be of

the term ax2. So only dominant term is included with

Big-O notation. If the algorithm’s has performance

is O(n2) then for larger n, the n2 dominates.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Common Growth Rate

TIME COMPLEXITY EXAMPLE

O(1) Constant Push in Stack

O(log N) log Finding entry in sorted array

O(N) linear Finding entry in unsorted array

O(N log N) n log n Sorting n items by divide and conquer

O(N2) quadratic Shortest path between two nodes in a graph

O(N3) cubic Simultaneous linear equation

O(2n) exponential The Tower of Hanoi problem

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Guidelines for computing complexity

 Select the computational resource you want to
measure. Normally we have to measure time
complexity.

 Look out for the variable which makes algorithm
work more or less. It may be single or multiple
variables. This will be our size of input.

 After this try to see, if there are different cases
inside it, such as when algorithm gives best
performance, when gives worst performance and
when algorithm takes between the two cases.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Calculating Complexity

 Five guidelines for finding out the time complexity

of a piece of code are :

 Loops

 Nested Loops

 Consecutive statements

 If-then-else statements

 Logarithmic complexity

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Loop

 The running time of loop is equal to the running time

of statements inside the loop multiplied by number

of iteration. For example:

 for i in range(n):

 a = a + 2

So, total time taken = C * n = Cn , here n is a

dominant term, So efficiency is O(n)

Loop executes

n times

All the steps in

this loop takes

constant time,

C

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Nested Loop

 To compute complexity of nested loop, analyze

inside out. For nested loops, total running time is the

product of the sizes of loops:

 for i in range(n):

 for j in range(n):

 S = S + 1

So total time taken = n * n * c = cn2 i.e. O(n2)

Outer loop n

times

Inner loop n

times

All steps

takes

constant time

C

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Consecutive Statements

 To compute complexity of consecutive statements, simply
add the time complexities of each statement

 a = a + 1

 for i in range(n):

 s = s + 1

 for j in range(n):

 for k in range(n):

 x = x + 1

So total time taken = C1 + n * C2 + C3*n2 i.e. O (n2)

Constant time

C1

Loop1 n

times Constant time

C2

Outer loop

n times

Constant time

C3

Inner loop

n times

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

If-then-else statements

 To compute time complexity of if-then-else, we consider the

worst case running time i.e. time taken by the test, plus time

taken by either then part of the else part, whichever is larger.

 if len(list1)!=len(list2):

 return false

 else:

 for i in range(n):

 if list1[i]!=list2[i]:

 return false

So, total time taken = C1 + C2 + (C3+C4) * n i.e. O(n), ONLY DOMINANT

TERM IS USED.

Constant time C1

Constant time C2

Loop executes n times

Constant time C3

Constant time C4

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Logarithmic Complexity

 Means that an algorithms performance time has

logarithmic factor e.g. an algorithm O(log N) if it

takes constant time to cut the program size by

fraction (usually by ½) i.e. after every iteration the

number of possibility to repeat the loop is reduced

by 1/2 like in BINARY SEARCHING.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Best , Average and Worst Case Complexity

 Best Case means an algorithm is performing its
intended operation using minimum number of steps.

 Worst Case means an algorithm is performing its
intended operation using maximum number of steps.

 Average case means between the Best and Worst Case
i.e. average number of steps

 TAKE AN EXAMPLE: with Linear Searching:

 If item we are searching is at 1st place then it will be its
BEST CASE, if item to search it at last place in list or not
in list then it will be its WORST CASE for any other
position it will be its AVERAGE CASE.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Determining the complexity of a program

that checks if a number n is prime

 First Approach -

 So total time taken will be : C1+C2+(C3+C4)*n+C5+C6+C7 i.e
O(n), considering the dominant term which is n

Loop repeats n times

Constant Time C1

Constant Time C2

Constant time C3

Constant time C4

Constant time C5

Constant time C6

Constant time C7

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Determining the complexity of a program

that checks if a number n is prime

 Second approach 𝑛 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 So total time taken: O(𝒏) because 𝒏 is the dominant term. Hence
Second approach for prime test is better than first approach because

 𝒏 < n

Loop repeats 𝑛 times

Constant Time C1

Constant Time C2

Constant time C3

Constant time C4

Constant time C5

Constant time C6

Constant time C7

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Determining the complexity of a program

that searches for an element in array

 Option 1 : Linear Search

def linearSearch(mylist,item):

 n = len(mylist)

 for i in range(n):

 if item == mylist[i]:

 return i

 return None

So total time taken : C1 + (C2+C3) * n + C4 i.e. O(n)

Only dominant term is taken

Loop repeats n times

Constant Time C1

Constant time C2

Constant time C3

Constant time C4

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Determining the complexity of a program

that searches for an element in array

 Option 2 : Binary Search

So total time taken : C1+C2+log2N(C3+C4+…C10) i.e.

O(log2N)

Only dominant term is taken

C1

C2 C3

C4

C5

C6

C7

C8

C9

C10

Low<=high:

Loop repeats

max log2N

times because

every time

segment

becomes half

in size

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

How many times above while loop

executes?

 How many times can you divide N by 2 until you have 1? This is because in
binary searching, search begins with N and reduces to its half after every
iteration and stops when the search segment size reduce to 1 element. So if
loop repeats k times then in formula this would be:

 N/2k = 1

 2k = N

Taking log2 on both sides:

 log2(2
k) = log2N

 k * log2(2) = log2N

 k * 1 = log2N

 k = log2N

This means you can divide log N times until you have everything divided this
means loops repeats at max log N times

Comparing Option 1 and Option 2 we can say that Option 2 is better as
log2N<n

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

