Digital Systems: Boolean Algebra and Logic Gates

DEFINITION:

Boolean Algebra is the algebra of truth values and operations performing on them which is used in Digital Circuits for performing logical operations.

Boolean Constants and Variables

- Logical statements can have either two values yes or no, true or false, 0 or 1.
- Boolean 0 and 1 do not represent actual numbers but instead represent the <u>state</u>, or <u>logic level</u>.

		Logic 0	Logic 1
		False	True
V	V	Off	On
		Low	High
		No	Yes
		Open switch	Closed switch
	VINOD K	UMAR VERMA, PGT(CS), KV OEF KAN	VPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

Truth Tables

A truth table is a means for describing how a logic circuit's output depends on the logic levels present at the circuit's inputs.

Inputs		Output	
А	В	x	
1	1	1	$A \longrightarrow 2$
0	1	0	$ \overset{i}{\longrightarrow} \overset{X}{\longrightarrow} \overset{X}{\longrightarrow}$
1	0	0	D
0	0	0	

Three Basic Logic Operators

ORANDNOT

OR Operation

Boolean expression for the OR operation: x = A + B

□ The above expression is read as "x equals A OR B"

AND Operation

Boolean expression for the AND operation: x =A • B

The above expression is read as "x equals A AND B"

NOT Operation

- The NOT operation is an unary operation, taking only one input variable.
- Boolean expression for the NOT operation: $x = \overline{A}$
- The above expression is read as "x equals the inverse of A"
- Also known as inversion or complementation.
- Can also be expressed as: A'

LOGIC GATES

OR Gate

An OR gate is a gate that has two or more inputs and whose output is equal to the OR combination of the inputs.

AND Gate

An AND gate is a gate that has two or more inputs and whose output is equal to the AND product of the inputs.

A

NOT Gate

The symbol and Truth Table for NOT gate is given below:

Describing Logic Circuits Algebraically

- Any logic circuits can be built from the three basic building blocks: OR, AND, NOT
- \Box Example 1: x = A B + C
- \Box Example 2: x = (A+B)C
- \Box Example 3: x = (A+B)

Examples 1,2

(a)

Examples 3

Evaluating Logic-Circuit Outputs

$$\Box x = ABC(A+D)$$

Determine the output x given A=0, B=1, C=1, D=1.
Can also determine output level from a diagram

Examples

Draw the Logic Gate:

- \square AB+C'D
- \Box A(B+C') + B'D'
- $\Box A' [(B+C)' + AB]$
- Draw the Truth Table:
- \square AB+(BC)'
- \square A(B'+C') + BC'
- \Box X'[(Y+Z)' + XY]
 - VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR & SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

Derive the Boolean Expression

NAND Gate

Boolean expression for the NAND operation: x = A B

NOR Gate

Boolean expression for the NOR operation: x = A + B

А	B	A + B	A + B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Boolean Theorems and Laws

Boolean Theorems and Laws

- $\Box x+y = y+x$
- $\Box x^*y = y^*x$
- $\Box x+(y+z) = (x+y)+z=x+y+z$
- \Box x(yz)=(xy)z=xyz
- $\Box x(y+z)=xy+xz$
- \Box (w+x)(y+z)=wy+xy+wz+xz
- $\Box x + xy = x$

Prove it by Truth Table

- // Commutative Law
- // Associative Law
- // Distributive Law
- // Absorption Law

De'Morgan's Theorems (Break the line change the sign)

- □ (x+y)'=x'y'
- Implications and alternative symbol for NOR function
- □ (xy)'=x'+y'
- Implications and alternative symbol for NAND function
- Process of Demorganization:
 - (i) Complement entire function
 - (ii) Change all AND to OR and all OR to AND
 - (iii) Complement each of the individual variables

Demorgan's Theorum

Demorgan's Theorum

Universality of NAND Gates

Universality of NOR Gates

