
DATA STRUCTURE
Group of data and well defined operations

for more updates visit: www.python4csip.com

WHAT IS DATA STRUCTURE?

 Is a named group of data of different data types

which is stored in a specific way and can be

processed as a single unit. A data structure has

well-defined operations, behaviour and

properties.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

DATA TYPE VS. DATA STRUCTURE

 DATA TYPE defines the type of values we can store
and operations we can perform. For example in int
data type we cannot store decimal values, we cannot
multiply two string type values. It also specifies
amount of memory it will take.

 DATA STRUCTURE is physical implementation that
clearly defines a way of storing, accessing and
manipulation of data stored in data structure. Every
data structure has a specific way of insertion and
deletion like STACK work on LIFO i.e. all operation
will take from one end i.e. TOP where as QUEUE
works on FIFO i.e. item inserted first will be removed
first and new item will always added to the end of
QUEUE.

 In python we will use LIST as a data structure.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

TYPES OF DATA STRUCTURE

 Data structure can be classified into following

two types:

 Simple Data structure : these are built from primitive

data types like integer, float, string or Boolean.

Example: Linear List or Array

 Complex Data structure : simple data structure can

be combined in various way to form more complex

data structure. It is of two types:

 Linear : are single level data structure i.e. in linear fashion

to form a sequence. Example : STACK, QUEUE, LINKED

LIST

 Non-Linear: are multilevel data structure. Example: TREE

and GRAPH.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

DIAGRAM TO REPRESENT ALL DATA STRUCTURE

DATA
STRUCTURES

SIMPLE

Array or Linear
List

COMPLEX

Linear

Stack Queue Linked List

Non-Linear

Tree Graph

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

LINEAR LIST ARRAYS

 Refers to named list of finite number of n similar

data elements. Each of the data elements can be

accessed by its unique index/subscript position

usually 0,1,2,3,…

 For example if the list mylist contains 10

elements then first element will be mylist[0],

second will be mylist[1] and so on.

 Array can be Single Dimensional or

Multidimensional. In Python arrays are

implemented through List data types as Linear

List or through NumPy arrays.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

STACK

 Allow to insert and delete items from one end

only called TOP.

 Stack works on LIFO principle. It means items

added in list will be removed first.

 Real life Example: Stack of Plates, Books,

Bangles

 Computer based examples: Undo Operation,

Function Call etc.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

QUEUE

 Allows insertion and deletion from different end

i.e. insertion from REAR and deletion from

FRONT

 Queue works on FIFO principle i.e. item added

first will be removed first.

 Real life example: Queue of People for ticket

 Computer based example: Keyboard typing,

Printer etc.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

LINKED LIST

 It is dynamic data structure i.e. size of Linked
List is not pre-known before the execution of
program. It takes memory as per requirement
during runtime and every item allocated
dynamically will be known as NODE.

 NODE contains 2 parts: (1) INFO part stores the
actual data to store like roll no. name, marks etc.
and (2) LINK holds the address of next allocated
node in memory creating chain of linked items

 Singly Linked List hold the address of next node
and last Node will point to NULL whereas
Doubly Linked List holds the address of next as
well as previous node allows both forward and
backward movement.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

TREES

 Are multilevel data structure having hierarchical

relationship among its elements called nodes.

 Topmost node is called the root of tree and

bottommost nodes are called leaves of tree.

 Each of the node holds the address of nodes below

it.

 It will never contains a closed loop

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

OPERATIONS ON DATA STRUCTURE
OPERATIONS DESCRIPTION

INSERTION Addition of new data to data structure

DELETION Removal of data element from data structure

SEARCHING Finding specific data element in data structure

TRAVERSAL Processing all data elements one by one

SORTING Arranging data elements in ascending or

descending order

MERGING Combining elements of two similar data

structure to form a new data structure.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

LINEAR LIST

 A linear data structure forms a sequence.

 When elements of linear structure are homogenous and are

represented in memory b means of sequential memory

location are called arrays.

 An Array stores a list of finite number(s) of homogenous

data elements.

 When upper bound and lower bound of linear list are given,

its size can be calculated as :

 Size of List = Upper Bound - Lower Bound + 1

 Size of above list = 6 – 0 + 1 = 7

Index 0 1 2 3 4 5 6

values 10 20 30 40 55 70 45

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

SEARCHING : LINEAR AND BINARY SEARCHING

 Linear Searching: each element of linear list is
compared with the given item to be searched one
by one. This method traverse the linear list
sequentially to located the given item.

 For Linear Searching item need not be in any
order, it can be performed on random list.

 Linear Searching is suitable for small list only.

 Best Case: when item to be search is at first
position

 Worst Case: when item to be search is at last
position or not present

 Average Case: when item is somewhere in list
other than first or last position.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

LINEAR SEARCH FUNCTION

def LSearch(Arr,Item):

 for i in range(len(Arr)):

 if Item == Arr[i]:

 return True

 return False

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

COMPLETE CODE: LINEAR SEARCH
def linearSearch(mylist,item):

 n = len(mylist)

 for i in range(n):

 if item == mylist[i]:

 return i

 return None

Arr=[]

n = int(input("Enter how many items in List "))

for i in range(n):

 d = int(input("Enter value :"))

 Arr.append(d)

key = int(input("Enter Value to Search :"))

pos = linearSearch(Arr,key)

if pos!=None:

 print("Found at position ",pos+1)

else:

 print("Not Found")

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

BINARY SEARCHING : DIVIDE AND RULE

 Data must be SORTED either in ascending or
descending order to search using binary method

 Searching Starts from the middle position. To find
middle position

 Mid = (lower_index + higher_index) / 2

 If middle value is equal to search element “SEARCH
SUCCESSFUL”

 If middle value if larger than search value,
searching continues towards left of middle position
otherwise towards right side of middle position. [for
data arranged in ascending order else vice versa]

 Takes less time compare to Linear searching

 Suitable for LARGE list

 Lets Search…

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

BINARY SEARCH FUNCTION

def BSearch(mylist,item):

 low = 0

 high = len(mylist)-1

 while(low<=high):

 mid = (low+high)//2

 if mylist[mid]==item:

 return mid

 elif mylist[mid]>item:

 high = mid - 1

 else:

 low = mid + 1

 return -1

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

COMPLETE CODE: BINARY SEARCHING
V

IN
O

D
 K

U
M

A
R

 V
E

R
M

A
, P

G
T

(C
S

), K
V

 O
E

F
 K

A
N

P
U

R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

INSERTION IN LINEAR LIST

 Insertion of new item can be done by 2 ways:

 In unsorted list we can add item directly at the end of

list

 For sorted array, we have to first find the position

where new items is to be added, then shift all the

elements from that position one place down and

create place for new item and then insert the new

item to that place.

 Let us take an example…

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

INSERTION IN SORTED ARRAY: INSERT 45

10

20

30

40

50

60

70

10

20

30

40

50

60

70

Correct

Position

for 45

Elements

Shifted down

from that

position

10

20

30

40

45

50

60

70

After

Insertion

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

INSERTION USING PYTHON APPROACH

 As we can observe Insertion of new item in sorted
array requires shifting of elements to make room and
this is very time consuming when list grows.

 It should be avoided using better approach like bisect,
available in bisect module.

 bisect.insort(list,newItem)

 The insort() function of bisect module inserts an item
in the sorted array, keeping it sorted.

 Bisect module offers another function bisect() which
return the appropriate index where new item can be
inserted to keep the order at it is.

 bisect.bisect(list,element)

 Note: bisect module works only on sequence
arranged in Ascending Order only.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

PROGRAM: USING BISECT MODULE

import bisect

marks=[10,20,30,40,50,60,70,80]

print("\nCurrent list is :")

print(marks)

Item = int(input("Enter item to insert:"))

pos = bisect.bisect(marks,Item)

bisect.insort(marks,Item)

print("\nItem Inserted at Index :",pos)

print("\nUpdated List is :")

print(marks)

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

BISECT MODULE

 As we know bisect module works only on

Ascending order, hence to make it for descending

order:

 First reverse the list arranged in

descending in ascending order using

reverse()

 Perform the insert operation

 Again reverse the list.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

DELETION FROM SORTED LIST:

TRADITIONAL APPROACH

 To Delete item from sorted list we have to first
find the element position in List using Binary
Searching

 Delete the item from list if search successful

 Shift all the items upwards to keep the order of
list undisturbed

 Reduce the List size by 1

 However in Python, we have to just delete the
item and rest of the work is automatically
handled by Python i.e. Shifting, reducing size etc.

 In Python we will use either remove(), del or
pop() for this purpose

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

DELETION OF AN ELEMENT FROM LINEAR

LIST : SORTED
V

IN
O

D
 K

U
M

A
R

 V
E

R
M

A
, P

G
T

(C
S

), K
V

 O
E

F
 K

A
N

P
U

R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

ANOTHER METHOD – SIMPLE AND SHORT

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

TRAVERSAL OF LINEAR LIST

 It involves processing of all elements one by one

like:

 Printing of all items

 Searching item one by one

 Double each value of list etc.

 In nutshell, if we are accessing all elements one

by one for any reason, it is traversing.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

EXAMPLE – 1 (PROGRAM TO DOUBLE THE LIST

ELEMENT)

def DoubleIt(Arr):

 for i in range(len(Arr)): #traversing all elements

 Arr[i] *= 2

Arr=[10,20,30,40,50]

print("Current List :")

for i in Arr: #traversing all elements

 print(i)

DoubleIt(Arr)

print("After Update List :")

for i in Arr:

 print(i)

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

FEW FUNCTIONS: TRAVERSAL (FUNCTION TO

FIND SUM OF EVERY ALTERNATE ELEMENTS)

#Function to add alternate elements

def AddAlternate(Arr):

 sum=0

 for i in range(len(Arr)):

 if i % 2 == 0:

 sum+=Arr[i]

 return sum

#Function to add element ending with digit 7

def AddEnding7(Arr):

 sum=0

 for i in range(len(Arr)):

 if Arr[i] % 10 == 7:

 sum+=Arr[i]

 return sum

#Function to count how many even values in list

def CountEven(Arr):

 count=0

 for i in range(len(Arr)):

 if Arr[i] % 2 == 0:

 count+=1

 return count

#Function to swap adjacent elements

def SwapAdjacent(Arr):

 for i in range(0,len(Arr),2):

 Arr[i],Arr[i+1]=Arr[i+1],Arr[i]

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

SORTING A LINEAR LIST

 Sorting means arranging the list items in Ascending or

Descending order.

 Many Sorting algorithm which we can use for this purpose

like: Bubble, Selection, Insertion, Shell, Quick, Heap,

Merge etc.

 In Class XI, we have already studied about 2 sorting

methods: Bubble and Insertion (PDF available in Class XI

option of website)

 Bubble Sorting

 Insertion Sorting

 Comparison between Bubble and Insertions

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

BUBBLE SORTING.pptx
Insertion Sorting.pptx
Insertion Sort vs Bubble Sort Some analysis.mp4

LIST COMPREHENSIONS

 We have already studied how to create a list i.e.

either by assigning comma separated values in

square bracket to list variable or by using

append() in loop.

 e.g. mylist = [4,8,12,16,20] Or by loop

 There is another method of creating list called

list comprehensions.

 A list comprehension is a shorthand for list

creating for loop in the form of single statement.

 Example 1: to create list using list

comprehension:

 mylist = [i*4 for i in range(1,6)]

 print(mylist)

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

EXAMPLE - 2

mylist = [i for i in range(1,101) if i%2==0]

print(mylist)

EXAMPLE - 3

lst2 = [i if i%2==0 else '@' for i in range(1,101)]

print(lst2)

EXAMPLE – 4 : FOR CLARITY

lst2 = [(i if i%2==0 else '@‘) for i in range(1,101)]

print(lst2)

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

LIST COMPREHENSION FOR NESTED FOR LOOP

Example: Nested Loop

Arr = []

for i in [10,20,30]:

 for j in [5,10,15]:

 Arr.append(i+j)

print(Arr)

Example : using List Comprehension

Arr = [i + j for i in [10,20,30] for j in [5,10,15]]

print(Arr)

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

ADVANTAGES OF LIST COMPREHENSIONS

 Code reduction : A code of 3 or more lines gets

reduced to single line.

 Faster code procession : list comprehensions are

executed faster than their equivalent for loops

because:

 Python will allocate the list’s memory before adding

the elements to it, instead of having to resize on

runtime

 Also call to append() function gets avoided thus

reducing the function overheads.

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

NESTED/TWO DIMENSIONAL LIST IN

PYTHON

 In Class XI, we have already studied Nested List
that a List can have another list as a value. For
e.g.

 List1 = [1,2,3]

 List2 = [10,20,List1]

 print(List2)

Output: [10,20,[1,2,3]]

List2

print(List2) # [10,20,[1,2,3]]

print(List2[0]) # 10

print(List2[2][0]) # 1

[0] [1] [2][0] [2][1] [2][2]

10 20 1 2 3

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

TWO DIMENSIONAL LIST

 Is a list having all elements as list of same shape for

e.g.

 Mylist=[[20,40,60],[5,10,15],[9,18,27]]

 It is a 2 – D List with 3 rows and 3 columns

 First value will be at index [0][0] and last will be [2][2]

mylist = [[1,2,3],[4,5,6],[7,8,9]]

print(len(mylist)) # no. of rows

print(len(mylist[0])) # no. of columns

20 40 60

5 10 15

9 18 27

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

TWO DIMENSIONAL LIST

 Ragged List: sometimes list contains another list

of different shapes for e.g.

 mylist = [[20,40,60],[4,5]]

Here first row contains 3 columns and 2 row contains 2

columns

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

CREATING AND PRINTING OF 2-D LIST

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

SLICE OF 2-D LIST

mylist=[[20,30,40],[21,22,23],[100,150,200],[19,21,40]]

print(mylist[:2])

print(mylist[2:])

print(mylist[2:][:1])

V
IN

O
D

 K
U

M
A

R
 V

E
R

M
A

, P
G

T
(C

S
), K

V
 O

E
F

 K
A

N
P

U
R

&
 S

A
C

H
IN

 B
H

A
R

D
W

A
J

, P
G

T
(C

S
), K

V
 N

O
.1

 T
E

Z
P

U
R

for more updates visit: www.python4csip.com

